
A Brief Introduction to Linux ∗

David Wright

February 20 2021

What We’ll Be Covering Today
1. History of Linux

2. Anatomy of a Linux system

3. Introduction to the shell and command line + some demos

History of Linux

The Road to Operating Systems
• Computers as we know them have their roots in the 1940s

– Electronic Numerical Integrator and Computer (ENIAC) - University
of Pennsylvania (1945)

– Colossus - British Military (1943)

• Computers finally get memory in 1949

– EDVAC (Electronic Discrete Variable Automatic Computer) and ED-
SAC (Electronic Delay Storage Automatic Calculator)

– Data was represented as waves in mercury filled tubes

• ENIAC and Colossus had no memory

– ENIAC was hard wired for each program

– Colossus used paper tapes

• EDVAC was the successor to ENIAC and EDSAC was a project out of Cambridge
University

• The mercury tubes worked via transducers, could cycle data back into tube or read it

ENIAC and Mercury Delay Line Memory

∗This PDF document is an inferior version of an OER HTML page; free/libre Org mode
source repository.

1

https://oer.gitlab.io/emacs-reveal-howto/intro-to-linux.html
https://gitlab.com/oer/emacs-reveal-howto
https://gitlab.com/oer/emacs-reveal-howto

The Road to Operating Systems (cont)

• IBM releases the IBM 701 in 1952

– First true assembly code and reusable code

• The UNIVAC 1103A introduces the interrupt, allowing a processor to
switch between jobs

• IBM created SHARE (Society to Help Alleviate Redundant Effort), an IBM user orga-
nization, to maintain common routines

• Prior to UNIVAC, computers only ran 1 program at a time

Operating Systems
• In the 1950s, batch processing “operating systems” came onto the scene

• In 1954, FORTRAN was released

– With high-level languages, programmers didn’t have to know about
the architecture of a computer

• In the 1964, Multics was released

– Hierarchical file system
– Written in a high level language
– Filesystem security, and more!

• Multics was big and bloated, so Bell Labs created UNIX in the late 60s

– Computers of old could only run one program at a time

∗ Batch processing operating systems (very basic) allowed computers to run
batches of jobs sequentially

– In the 60s we saw computers get smaller, cheaper, and easier to use

∗ multiprogamming and multiprocessing became more popular

– Multics was a turning point in the history of OS’s

– UNIX is a play on Multics (UN vs Mul because it is simpler)

Operating Systems (cont.)

• In 1973, UNIX 4th edition was released

– Written in C which made it easy to recompile for different architec-
tures

• In the 70s and 80s, we saw the arrival of Windows and OSX

– Academics and Researchers still use UNIX

• In 1984, the Bell Labs system was broken up

– Now AT&T, they sought to get into the computer business and re-
voked the free licensing of UNIX to universities

• Minix, a UNIX-like operating system, was created soon after but was only
freely available to universities and researchers

2

Operating Systems (cont.)

• In 1991, Linus Torvalds released
Linux

– Linux was UNIX-like, and
was completely free (speech
and beer)

– It saw quick adoption by
previous researchers who
used UNIX

– The open-source develop-
ment of Linux allowed it to
progress rapidly

Anatomy of a Linux System

First, what is Linux?
• It is just a kernel. It manages the following

– System Memory
– Software programs
– Hardware
– File system

• It needs basic programs in order to be a complete operating system

– Historically, it has bundled the GNU coreutils

Four Basic Parts of a Linux System
• The Linux kernel

• The GNU utilities

• A graphical desktop environment

• Application software

The GNU Utilities
• GNU (GNU’s Not UNIX) organi-

zation developed a complete set
of Unix utilities for:

– Handling files

– Manipulating text

– Managing processes

• They had no kernel to run them
on until they started getting bun-
dled with Linux

3

System Memory Management
• The kernel doesn’t only manage physical memory

– It can also create and manage virtual memory somewhere on the disk
called the swap space

• The kernel swaps memory locations back and forth from physical memory
to swap space

• Memory locations are grouped into pages

– The kernel maintains a table with page locations (swap or physical)

– The kernel swaps out pages that have not been access for a period
of time

System Memory Management (cont)

Figure 6: Diagram showing the virtual memory, physical memory, and table of
memory pages

Program Management
• A running program in Linux is a process

• The kernel creates the init (first) process which starts all other processes

4

• Systemd is the most popular Linux initialization and process manage-
ment system. It can start processes when:

– the system boots

– a particular hardware device is connected

– a service is started

– a network connection is established

– a timer has expired

More Systemd

• unit files are linked to events and determine what processes to run

• targets are groups of unit files that define a specific state of the system

• Example: At startup, the default.target unit defines all the unit files
to start.

Hardware Management
• The kernel needs driver code to know how to drive a particular device

• In the past, the only way to add the driver code was to recompile the
kernel with it added

• Kernel modules allow us to insert driver code into a running kernel without
having to recompile

Types of Hardware Devices

• Character

– Devices that can handle one character at a time, such as modems
and terminals

• Block

– Devices that can handle large blocks of data, such as drives

• Network

– Devices that use packets to send and receive data, such as network
cards

Interaction with Devices

• Linux creates special files called nodes for each device

• All communication is done through the device node

• Each node has a unique number pair that identifies it to the kernel

– Major number: similar devices are grouped with this number

– Minor number: identifies specific device in major group

5

File Systems
• The Linux kernel supports many

file systems

• The kernel interacts with each file
system using the Virtual File Sys-
tem (VFS)

– Provides a standard inter-
face for kernel to file system
communication

The Shell
• An interactive utility that you interact with via the command line

• Allows you to start programs, manage files, manage processes, etc.

• You can group shell commands together into files to execute as a program

• A few shells are available, but the Bash shell is most common

• Break the constraints of a GUI

– String together multiple commands using pipes (|) and create a
pipeline

Graphical Environments on Linux
• In the early 90s, only text interfaces were available

• Now, the X Window software allows Linux to use graphical interfaces

• The two main packages that provide the X Window software are

– X.org (older, more mature)

– Wayland (newer, more secure, easier to maintain)

• The X Window software by itself only produces a graphical display envi-
ronment for individual applications

– If you want one of the now standard desktop environments (GNOME,
KDE), you’ll need to install it separately

The Linux File System Hierarchy Standard (FHS)
Before we go into demos, let’s learn a little about the Linux file system

• As opposed to Windows, Linux doesn’t have “C” or “D” drives

• All disks are mounted under the root (“/”) , a single base directory in
what’s called the “virtual directory”

6

Common Linux Directories
• / Root of the virtual directory, usually no files are placed here (only other

directories)

• /boot Directory where boot files are stored

• /dev Where Linux creates device nodes

• /etc System configurations

• /home User directories

• /media Common place to mount external drives

• /tmp A special directory, only holds files temporarily

• /usr Many things go here, but it is most often used for user-installed
programs

Shell and Command Line + Demos

The Shell Prompt
• In the upper left we have the
prompt

– user@host

– Also shows the current di-
rectory

• When you first log in, you’ll be
dropped into your home directory
(~)

[width=.9]figures/dave/01-login

Navigating the File System
• pwd prints the working directory

(where you are)

• cd changes directories

– If ran without any argu-
ments, it takes you to your
home directory

– Can use absolute (starting
at the root) or relative paths

– Can use .. to reference the
parent directory

– As we move around, the
prompt reflects the current
directory

[width=.9]figures/dave/02-nav

7

Navigating the File System (cont)

• ls lists the contents of a directory

– ls -l gives a long listing
with better structure and
more information (permis-
sions, file vs directory, etc.)

– ls -a lists all files, even dot-
files

– ls -la combines the -l and -a
options

[width=.9]figures/dave/02-nav

Using the Manual
• The man command lists the

manual for a given command

• If you don’t know the specific
name, use the -k option to search
by keyword

• You can even man man

[width=.9]figures/dave/03-man

Moving and Copying Files
• The mv and cp commands move

and copy files

• mv doesn’t move data (if in same
file system)

– Directory entries just get
updated

– mv can move directories, cp
-R can copy directories

[width=.9]figures/dave/04-mvcp

• The -i option prevents you from
overwriting existing files

Creating and Removing Files
• The rm command removes files

– rm is forever, don’t forget
it

• The touch command creates an
empty file

[width=.9]figures/dave/05-rmtouch

• The -i option prompts you when
removing files

8

Creating and Removing Directories
• mkdir makes directories

– mkdir -p can create nested
directories

• rmdir removes empty directories

– rm -r will remove directo-
ries and their contents, but
be careful

[width=.9]figures/dave/06-dirs

Viewing File Contents
• cat will output all of the file con-

tents to the screen

• less is a pager. It will let you
scroll through your content

• tail and head show you the end
or beginning of your file

– the -n option lets you spec-
ify the number of lines to
show

[width=.9]figures/dave/07-cat

Editing File Contents
• sed (Stream EDitor) is a power-

ful command line tool for modi-
fying files

– In the example, I use it
to replace all occurrences of
“Hello” with “Goodbye”

• There are also multiple command
line text editors

– nano is a very basic text
editor that is included with
most Linux distributions

[width=.9]figures/dave/08-ed

Editing File Permissions
• We often need to change the per-

missions on a file

• chmod (change mode) allows us
to tweak file permissions

– In the example, I give only
my user execute privileges
(u+x) on “hello-world.py”

[width=.9]figures/dave/09-chmod

9

Searching Files and File Globbing
• grep lets you search the contents

of files (and more)

– The -i option is for case in-
sensitive searches

– The -v option finds the lines
which don’t have the search

– The -n option gives line
numbers

• find helps you search for files

– I use . to search the current
directory and the -name
option to search by file name

[width=.9]figures/dave/10-grfd

• I also introduced file globbing via
wildcards (not an exhaustive ex-
ample of wildcards)

– The ? represents any single
character

– The [] specify a range

– The * matches anything. I
use it to find the only .py
file

Output Redirection and Pipelines
• The right arrow > can be used to

redirect the output of a command

– Notice that a single arrow
overwrites the file

– A double arrow » appends

• In the example, I use a pipe | to
use the output of the cat com-
mand as the input to the less
command

[width=.9]figures/dave/11-pipe

The End
That about wraps up what I can reasonably cover in an intro lecture. Please
try these examples out on your own, and maybe try something new as well!

Further Reading
• Linux Command Line and Shell Scripting Bible

– https://bit.ly/3k7Zy1m (UCF Library)

• https://linuxjourney.com/

10

https://bit.ly/3k7Zy1m
https://linuxjourney.com/

