Intro to NumPy, SciPy, Matplotlib *

David Wright

February 27 2021

What We'll Be Covering Today

- 1. What are NumPy, SciPy, and Matplotlib?
- 2. Basic usage and functionality
- 3. Demos

What are NumPy, SciPy, and Matplotlib? NumPy

- NumPy is the fundamental package for scientific computing in Python.
- Python library that provides the following:
 - Multidimensional array object (ndarray)
 - Various derived objects (such as masked arrays and matrices)
 - Assortment of routines for fast operations on arrays
 - * routines include mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, basic statistical operations, random simulation and more.

^{*}This PDF document is an inferior version of an OER HTML page; free/libre Org mode source repository.

SciPy

- Built on NumPy
- Provides numerical routines, such as:
 - Numerical integration
 - Interpolation
 - Optimization
 - Linear algebra
 - Statistics

Matplotlib

[width=.9]figures/dave/matplotlib

- \bullet Library for creating visualizations in Python
 - Static,
 - Animated,
 - and Interactive visualizations

Basic Usage and Functionality

NumPy Basics

• Basic data type is **ndarray**

```
import numpy as np
x = np.array([[1,2,3],[4,5,6]])
print(type(x))
print(x.shape)
print(x)

<class 'numpy.ndarray'>
(2, 3)
[[1 2 3]
  [4 5 6]]
```

- Pre-compiled C code runs behind the scenes
 - Gives us speed and memory efficiency
- $\bullet \;$ the arrays are ${\bf n\text{-}dimensional}$
- import as np is the standard convention

NumPy Basics

As an example, I'll show how matrix multiplication can be done very easily with NumPy

 \bullet $\bf Note:$ by default, the * operator performs element-wise multiplication on NumPy arrays

SciPy Basics

• SciPy is split into a number of subpackages

Subpackage	Description
cluster	Clustering algorithms
constants	Physical and mathematical constants
$\operatorname{fftpack}$	Fast Fourier Transform routines
integrate	Integration and ordinary differential equation solvers
interpolate	Interpolation and smoothing splines
io	Input and Output
linalg	Linear Algebra
$\mathbf{ndimage}$	N-dimensional image processing
odr	Orthogonal distance regression

SciPy Basics

Subpackage	Description
optimize	Optimization and root-finding routines
\mathbf{signal}	Signal processing
sparse	Sparse matrices and associated routines
$\mathbf{spatial}$	Spatial data structures and algorithms
$\mathbf{special}$	Special functions
stats	Statistical distributions and functions

• Standard practice is to import only the subpackages you need

from scipy import optimize

Matplotlib Basics

• The basic usage is as follows

```
import matplotlib.pyplot as plt
plt.plot(#your-data)
```

- Matplotlib has many different plotting options
 - Histograms
 - Bar Charts
 - Errorbar
 - Scatter
 - -3D
 - Contours, and more

Python Demos

Visit the link below to get an online instance of a Jupyter Notebook with some demos.

• https://mybinder.org/v2/gh/davecwright3/sps-computing-lectures/

The End

Acknowledgements

- Snippets of Dr. Joseph Harrington's Python demos were used with his permission
- ThinkPython was used as a reference

Further Reading

- https://greenteapress.com/wp/think-python-2e/
- https://diveintopython3.net/