Topology Notes

David Wright

January 21, 2021

Contents

1 Preliminaries

2 Metrics and Norms

These notes are from my spring 2021 Introduction to Topology course. This course was taught by Dr. Gary Richardson at UCF out of C. Wayne Patty's *Foundations of Topology*, 2nd ed.

1

 $\mathbf{2}$

1 Preliminaries

Definition 1.0.1 (De Morgan's Laws). De Morgan's Laws give us relations between unions, intersections, and complements of sets.

Let X be a set and $A_j \subset X, j \in J$ (J is an **index set**). Then,

1.
$$\left(\bigcup_{j\in J} A_j\right)^C = \bigcap_{j\in J} A_j^C$$

2. $\left(\bigcap_{j\in J} A_j\right)^C = \bigcup_{j\in J} A_j^C$

Lemma. Let $f: x \to y, A_j \subseteq X, A \subseteq X, B_j \subseteq Y$. Then,

1.
$$f\left(\bigcup_{j\in J} A_j\right) = \bigcup_{j\in J} f(A_j)$$

2. $f\left(\bigcap_{j\in J} A_j\right) = \bigcup_{j\in J} f(A_j)$
3. $f^{-1}\left(\bigcup_{j\in J} B_j\right) = \bigcup_{j\in J} f^{-1}(B_j)$
4. $f^{-1}\left(\bigcap_{j\in J} B_j\right) = \bigcap_{j\in J} f^{-1}(B_j)$
5. $f^{-1}(B^C) = (f^{-1}(B))^C$
6. $f(A^C) = (f(A))^C$ no nice connection

2 Metrics and Norms

Definition 2.0.1 (Norm). A norm " $\|\cdot\|$ " is a map

 $\|\cdot\| \to [0,\infty]$

Given a vector space V over \mathbb{R} ; $x \in V$ and $\alpha \in \mathbb{R}$, a norm has the following properties:

- 1. $||x|| = 0 \iff x = 0$
- 2. $\|\alpha x\| = |\alpha| \|x\|$
- 3. $||x+y|| \le ||x|| + ||y||$

Lemma. Let V be a vector space with norm $\|\cdot\|$. Define $d = \|x - y\|$. Then d is a metric on V.

Definition 2.0.2 (Metric). Given a set X and $x \in X$, $d : x \times x \to (0, \infty)$ is a metric if:

- 1. $d(x,y) = 0 \iff x = y$
- 2. d(x, y) = d(y, x)

3.
$$d(x,y) \leq d(x,z) + d(z,y) \ \forall x, y, z$$

Ex. 2.0.1 (Norm in \mathbb{R}^n).

$$\|x \in \mathbb{R}^n\| = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$

Ex. 2.0.2 (Euclidean Metric in \mathbb{R}^n). $d(x, y) = ||x - y|| = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{1/2}$

Ex. 2.0.3 (l_2 Metric). Given

$$l_2(\mathbb{R}) = \left\{ (x_i) \middle| x_i \in \mathbb{R}; \sum_{i=1}^{\infty} x_i^2 < \infty \right\}$$

Define $||x|| = \left(\sum_{i=1}^{\infty} x_i^2\right)^{1/2}$. Then the metric is

$$d(x,y) = ||x - y|| = \left(\sum_{i=1}^{\infty} (x_i - y_i)^2\right)^{1/2}$$

Ex. 2.0.4 (l_1 "Taxi Cab" Metric). Given

•

$$l_1(\mathbb{R}) = \left\{ (x_i) \middle| x_i \in \mathbb{R}; \sum_{i=1}^{\infty} |x_i| < \infty \right\}$$

Define $||x|| = \sum_{i=1}^{\infty} |x_i|$. Then the metric is

$$\rho(x,y) = ||x-y|| = \sum_{i=1}^{\infty} |x_i - y_i|$$

Ex. 2.0.5 (Metric on Continuous Functions). On an interval [a, b]: Given

$$\{f|f:[a,b] \to \mathbb{R}; f \text{ continuous}\}$$

Define $||f|| = \int_a^b |f(x)| \mathrm{d}x$. Then the metric is

$$d(f,g) = \|f - g\| = \int_{a}^{b} |f(x) - g(x)| \mathrm{d}x$$

Ex. 2.0.6 (Square Metric).

$$\sigma(x, y) = ||x - y|| = \max\{|x_i - y_i| | i \in [1, n]\}$$

Ex. 2.0.7 (Discrete Metric).

$$d(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$$
(1)

Definition 2.0.3 (Open Ball). Given a point x, and open ball around it is denoted by

$$B(x,\delta) = \{y \in X | d(x,y) < \delta; \delta > 0; x \in X\}$$

Figure 1: An open ball with the Euclidean Metric

Figure 2: An open ball with the l_1 Metric

Figure 3: An open ball with the Square Metric