Advanced Calculus Notes

David Wright

January 17, 2021

Contents

-	D 1	•	•	•
T	Pre	lım	ınar	\mathbf{r}

2 Tools for Analysis

These notes are from my spring 2021 Advanced Calculus course. This course was taught by Dr. Sona Swanson at UCF out of Fitzpatrick's *Advanced Calculus*, 2nd ed.

1

2

1 Preliminaries

In order to rigorously develop analysis, one needs to understand the foundation on which it is constructed– \mathbb{R} . We will assume that the field of real numbers \mathbb{R} satisfies three groups of axioms: the **Field Axioms**, the **Positivity Axioms**, and the **Completeness Axiom**.

The Field Axioms

- 1. Commutativity of Addition: a + b = b + a
- 2. Associativity of Addition: (a + b) + c = a + (b + c)
- 3. Additive Identity: 0 + x = x
- 4. Additive Inverse: x + -x = 0
- 5. Commutativity of Multiplication: ab = ba
- 6. Associativity of Multiplication: (ab)c = a(bc)
- 7. Multiplicative Identity: $1 \cdot x = x$
- 8. Multiplicative Inverse: All a other than the Additive Inverse have a b s.t. $a \cdot b = 1$. Call this inverse a^{-1} .
- 9. Distributive Property: a(b+c) = ab + ac
- 10. The Nontrivial Assumption: $1 \neq 0$, i.e., the Multiplicative Identity \neq Additive Identity

The Positivity Axioms

- 1. $a, b \in \mathbb{P} \implies ab \in \mathbb{P}$ and $a + b \in \mathbb{P}$
- 2. For any $a \in \mathbb{R}$, exactly one of a or $-a \in \mathbb{P}$ unless a = 0

Properties of Inequalities

Using the Field and Positivity Axioms, one can establish the following familiar properties of inequalities.

- 1. For each $a \in \mathbb{R}, a \neq 0 \implies a^2 > 0$.
- 2. For each $a \in \mathbb{P}, a^{-1} > 0$
- 3. If a > b, then

ac > bc if c > 0, and ac < bc if c < 0

Ordering \mathbb{R}

Define a > b if $a + (-b) \in \mathbb{P}$ and $a \ge b$ if $a + (-b) \in \mathbb{P}$ or a + (-b) = 0. Similarly define for b > a and $b \ge a$. Put into words, a is greater than b if the sum of a and -b is positive. If the sum is zero, then they are equal.

2 Tools for Analysis

Definition 2.0.1 (Inductive Set). A set S of real numbers is said to be inductive if

- 1. the number $1 \in S$
- 2. if the number $x \in S$ then $x + 1 \in S$

Ex. 2.0.1. The set of real numbers \mathbb{R} is inductive.

Definition 2.0.2 (The Natural Numbers). The natural numbers \mathbb{N} are the intersection of all the inductive subsets of \mathbb{R}

Remark. There is an interesting consequence that follows from Definition 2.0.2: any inductive set of natural numbers is identically \mathbb{N} .

What about mathematical induction?

Definition 2.0.3 (Mathematical Induction). Let S(n) be a mathematical property or assertion, where $n \in \mathbb{N}$. Suppose S(1) is true, and that if S(k) is true then S(k+1) is true. Then, S(n) will be true $\forall n$.

Given \mathbb{N} , how do we construct \mathbb{Z} , the integers?

Definition 2.0.4 (The Integers). \mathbb{Z} is the natural numbers, their additive inverses, and 0. It is closed under addition and multiplication.

$$\mathbb{Z} = \{a, -a | a \in \mathbb{N}\} \cup \{0\}$$

We are now ready to construct the rationals \mathbb{Q} .

Definition 2.0.5 (The Rationals).) \mathbb{Q} is the set of numbers that can be created by the ratio of two integers.

$$\left\{x \middle| x = m \cdot (n)^{-1}; m, n \in \mathbb{Z}; n \neq 0\right\}$$